

Novell
AppWare

A System for Developing

Network Applications

White Paper

July 1993

R

462-000375-001

2 Novell Visual AppBuilder

© 1993 by Novell, Inc., 122 East 1700 South, Provo, Utah 84606, USA

All rights reserved. No part of this publication may be reproduced,

photocopied, stored on a retrieval system, or transmitted without the

express prior written consent of the publisher.

For more information about Novell products,

contact Novell as follows:

In the U.S. or Canada: Call 1-800-NETWARE (1-800-638-9273).

In all other locations, contact your local Novell office or call

1-801-429-5588.

Novell, the N design, NetWare, Btrieve, Novell DOS are registered

trademarks, and AppWare, AppWare Bus, AppWare Foundation, AppWare

Loadable Module (ALM), IPX, NetWare Loadable Module, Novell Visual

AppBuilder, ODI, and Technical Support Alliance are trademarks of Novell,

Inc. UNIX is a registered trademark of Unix System Laboratories, Inc., a

wholly owned subsidiary of Novell, Inc.

Macintosh is a registered trademark, and MPW is a trademark of Apple

Computer, Inc. Banyan is a registered trademark of Banyan Systems, Inc.

Easel is a registered trademark of Easel Corporation. Gupta is a trademark

of Gupta Technologies, Inc. Intel is a registered trademark of Intel

Corporation. OS/2 is a registered trademark, and SAA is a trademark of

International Business Machines Corporation. Excel, LAN Manager and

Windows NT are trademarks of Microsoft Corporation. Motorola is a

registered trademark of Motorola, Inc. Oracle is a registered trademark of

Oracle Corporation. Powersoft is a trademark of Powersoft Corporation.

ONC and TIRPC is a trademark of Sun Microsystems, Inc. Sybase is a

registered trademark of Sybase, Inc. UnixWare is a registered trademark of

Univel, Inc. X/Open is a trademark of X/Open Company, Ltd.

Contents

AppWare: An Overview ...6

What Is AppWare? ...6

The Need for AppWare ...6

Development Challenges ..7

The Complexity of Developing Network Applications in a

Heterogeneous Environment ...7

The Inefficiency of Developing Network Applications7

The AppWare Solution ..8

AppWare: A Technical Description ..10

The Business Computing Environment ...10

AppWare’s Components ...12

The AppWare Foundation ...14

The AppWare Bus and AppWare Loadable Modules16

Integration with Third-Party Tools ...20

Using AppWare: An Example ...20

First Scenario ...20

Second Scenario ..21

Third Scenario ..21

Conclusion ..21

Why Novell? ...22

Appendix A: The NetWare Operating System25

The NetWare Multiprotocol Architecture ..25

STREAMS and Open Datalink Interface ...25

The Interfaces: IPX™/SPX Sockets, TLI and TIRPC25

NetWare Authentication ..26

NetWare Basic Network Services ...27

NetWare Directory Services ...27

NetWare Time Services ...27

NetWare Universal File System ...27

Appendix B: Open Network Computing (ONC)28

ONC Transport Protocol Architecture ...28

Streams ...28

The Interfaces: TLI and TIRPC ..28

Kerberos Authentication ..28

ONC Basic Network Services ..28

The Network Information Service (NIS+) ..28

Network Time Protocol (NTP) ..29

The Network File System (NFS) ..29

3Novell AppWare

Appendix C: Distributed Computing Environment (DCE)30

The DCE Protocol Architecture ...30

The Interfaces: Sockets and DCE RPC ...30

Kerberos Authentication ..30

DCE Distributed Naming Service ...31

Time Service ...31

DFS—The Distributed File System ...31

Appendix D: Microsoft NT Advanced Services Networking32

The Microsoft NT Protocol Architecture ...32

Streams ...32

The Interfaces: NDIS, TDI ,MSRPC and Win Sock32

Advanced Network Services Authentication ...33

Basic Network Services ..33

Appendix E: Compound Document Architectures34

Apple’s Compound Document Architecture ..34

Microsoft’s OLE 2.0 ...34

Appendix F: Object-Oriented Programming ..35

Distributed Object Computing ...36

Object Request Brokers ..36

The Common Object Request Broker Architecture (CORBA)36

AppWare Glossary ...38

4 Novell AppWare

Using This Document

This paper provides an overview of AppWare™, Novell’s system for develop-

ing network applications. It describes the components of the AppWare

system and explains how developers and users will interact with this new

layer of software.

The AppWare system is comprised of two major software components: the

AppWare Foundation and the AppWare Bus™. These components provide a

consistent set of platform-independent, network-independent and service-

focused interfaces and engines that accommodate the needs of commercial

and corporate developers who need to create network applications quickly

and easily.

This paper is divided into the following sections.

AppWare: An Overview gives an overview of the development challenges

AppWare addresses.

AppWare: A Technical Description discusses the two major components

of AppWare, as well as the wide range of third-party tools and support ser-

vices for AppWare.

Appendices cover the technologies discussed in this paper in more detail.

Glossary describes the key terms introduced in this paper.

5Novell AppWare

AppWare: An Overview

What Is AppWare?

AppWare is a new layer of software that leverages today’s popular operating

systems, development tools and applications. AppWare allows both commer-

cial and corporate software developers to create and deploy network

applications more quickly and easily. The role of the AppWare layer is similar

to the role of the operating system layer. By shielding developers from the

complexities of hardware, the operating system has accelerated the growth of

new desktop applications. Similarly, AppWare will shield developers from the

complexities of networks and accelerate the growth of network applications.

As a result, users can more easily run a wide variety of applications that take

full advantage of the network and its powerful services.

The Need for AppWare

AppWare provides a solution to two critical challenges currently facing the

software development community:

• It simplifies the development of network applications in a complex,

heterogeneous environment.

• It shortens the network application development process and

makes it more efficient.

Developers who create network applications must deal with the growing

numbers of operating systems, development application programming inter-

faces (APIs), computing standards and development toolkits available today.

AppWare hides these complexities from developers by providing them one

uniform set of APIs for accessing different operating systems, graphical user

interfaces (GUIs) and network services. Using AppWare, programmers can

write the application code once and run the application on different operating

systems and networks.

Even with a single API and one code path, however, corporate and vertical

software developers cannot afford to create applications using line-by-line

coding — a time-consuming task that requires specialized skills. AppWare

gives programmers the ability to build applications by using large-grained,

interchangeable software components. This way, developers can quickly

construct powerful, reliable applications without writing a single line of code.

With AppWare, developers can quickly and easily build applications that pro-

vide users the full benefits of the power of their networks. As the leading

provider of network operating systems and services, Novell has developed

AppWare to provide the underlying APIs, development technologies and ser-

vices required to successfully write network applications.

6 Novell AppWare

Development Challenges

The Complexity of Developing Network Applications in a
Heterogeneous Environment

On average, one major new operating system or service API is delivered to

developers every 45 days. This rapid pace makes it virtually impossible for

application developers to keep up with emerging technologies. Resource

constraints force developers to choose among the available alternatives.

Often, developers can only afford to focus on one platform or operating sys-

tem, limiting the markets and minimizing the users’ needs that their products

can address. Consider this challenge in the following contexts:

Multiple Networking Models

Application developers are currently faced with an unprecedented need for

network access and functionality. Now that networks dominate the comput-

ing environment, software developers are shifting their focus from writing

standalone applications to creating network applications. Developers must

contend with a variety of network models to deliver the services and data

their users require.

The widespread presence of heterogeneous computing environments has

made the choice of development platforms difficult, as developers try to

anticipate the best markets for their products. In the near future, network

accessibility and functionality will determine the success or failure of many

organizations.

Multiple Desktop Platforms

To support multiple platforms, developers must learn all the details of the

desktop platforms on which their applications run. For example, if a devel-

oper had to write a million lines of C code to create an application for MS

Windows, that developer would likely have to rewrite most of that code for

each platform on which the application will run, such as Macintosh, UNIX
®

or

OS/2. Furthermore, developers must know how to navigate and control the

networks that link these various desktop platforms. Thus, in most cases, the

knowledge, skills and resources required to create network applications have

been prohibitive.

The Inefficiency of Developing Network Applications

Assume that the complexity problem was solved and programmers had

access to all major operating systems and networks through one standard set

of APIs. Even in this case, the traditional application development process

requires writing code from scratch using third generation languages (3GLs)

such as C or C++. Typically, this method of application development is used

by horizontal application vendors who work on multi-million dollar projects

that can take years to complete.

7Novell AppWare

8 Novell AppWare

Corporate and vertical software developers, however, can no longer afford to

create applications using this method. Through several corporate advisory

councils, Novell has learned that desktop custom applications have about

one-fifth the lifespan and take 50 percent more time to create than mainframe

custom applications. Corporations cannot downsize their mainframe applica-

tions without a more efficient method of developing and deploying

applications. As a result, corporations are running into severe roadblocks

when they attempt to replicate mission-critical mainframe applications on

desktops and networks.

The industry has reached a point where developers are demanding a more

effective response to these problems than today’s tools and techniques can

provide. Just as the operating system solved the application crisis for desktop

computers, AppWare solves the current crisis for network applications (see

Figure 1).

The AppWare Solution

AppWare is not an operating system or application. AppWare is a new layer

of software that provides two components of technology to solve the two

primary challenges described previously. These two components are the

AppWare Foundation™ and the AppWare Bus.

The AppWare Foundation is a “fire wall” that insulates programmers from the

growing complexities of multiple operating systems, GUIs and networks. The

AppWare Foundation provides 3GL application programmers with a consis-

tent, cross-platform set of APIs. By writing to this single API set, developers

can access existing GUIs, operating systems and network services.

The second AppWare component, the AppWare Bus, provides large-grained,

interchangeable software modules that corporate and vertical developers can

use and reuse to quickly construct new network applications, without having

to write code. These software components are called AppWare Loadable

Modules™ (ALMs).

User

Hardware

Applications

Hardware

User

OS/Network

Hardware

User

Applications

OS/Network

Hardware

Applications

AppWare

User

Figure 1. The AppWare layer

The AppWare Bus and ALMs are the software equivalent of the PC mother

board and interchangeable plug-in cords. When ALMs are plugged into the

AppWare Bus, their functionality becomes rapidly accessible for building

new applications. In addition, third parties can offer their technology in the

form of new ALMs.

The AppWare solution provides the following benefits:

• AppWare enables developers to easily access network services from a

variety of desktop platforms. AppWare makes it as easy to incorporate

messaging, telephony, multimedia, imaging and other network capabilities

into an application as it is to incorporate basic file and print services.

• Traditional programmers can use one set of APIs, instead of having to

master the underlying details of how to define, access and use the wide

array of services available today. As a result, developers can concentrate

on application-specific functionality.

• Reusing existing software modules greatly reduces application develop-

ment time. AppWare enables developers to construct applications with

only a fraction of the time and effort required when building an infrastruc-

ture along with an application.

• Once familiar with AppWare, developers can reuse its components as

needed, rather than having to recreate the same components for each new

application.

• AppWare is open at all levels and will be available on all major operating

systems and networks. Therefore, it opens broader application markets

than have previously existed.

• Because AppWare is inherently multiplatform in its design and capabili-

ties, it relieves developers of most of the effort required to build and

maintain different application versions for each platform they support.

Applications written on top of the AppWare Foundation API set can be

recompiled to run on DOS, MS Windows, Windows/NT, OS/2, UnixWare

and the Macintosh desktops, as well as NetWare® and UnixWare servers.

Novell intends to work with developers, development tool vendors, hardware

and operating system suppliers, and other third parties to make AppWare a

standard for network application development. AppWare will remain open

and extendible and will incorporate important development and interface

standards. Therefore, AppWare can be welcomed into companies that must

protect themselves from the vagaries of proprietary system components.

9Novell AppWare

AppWare: A Technical Description

This section starts by describing the heterogenous nature of today’s business

environment which has led to the developmnet of AppWare. This description

is followed by a representation of the AppWare components and the third-

party tools that support it. The section concludes with an example of using

AppWare for developing network appplications.

The Business Computing Environment

Contemporary computing environments consist of multiple hardware and

operating system platforms. These platforms range from network or applica-

tion servers, such as NetWare or UNIX, to mainframe systems that process

transactions and act as repositories for consolidated enterprise information.

New facets of these environments include mobile computing and dedicated

systems. Mobile computing encompasses notebook systems and personal

digital devices, all of which need access to network services and messaging

support. Dedicated systems consist of microprocessors or computing sys-

tems embedded into a broad range of devices, from machines on the shop

floor to hand-held data acquisition devices for inventory management in retail

settings.

As microprocessor technology continues to decrease in cost, computing

intelligence will find a role in almost every piece of machinery and in every ap-

pliance imaginable. Examples range from lathes on the shop floor to hand-

held devices. The term ubiquitous computing applies to any intelligent device

that incorporates some computer technology. To reap the maximum benefits

from these intelligent devices, developers must include them in the networked

environment so they can access, as well as provide, network services.

As Figure 2 shows, a heterogeneous computing environment clearly exists

and includes the following:

• At the desktop, MS Windows, Windows/NT, Macintosh, OS/2, Novell DOS®

and UnixWare Personal Edition provide operating system services.

• At the server, NetWare and UnixWare provide network services that cover

everything from basic file and print to database and telephony services.

• Heterogeneous networking environments include IBM’s SAA,

USL/SunSoft’s Open Network Computing (ONC), the Open Software

Foundation’s (OSF) Distributed Computing Environment (DCE), as well

as Novell’s NetWare operating system.

• Mainframe and mini-computer platforms host legacy systems, high-volume

transaction systems and an enterprise’s repositories of consolidated infor-

mation.

• Intelligent (or ubiquitous computing) devices such as manufacturing

equipment on the shop floor can be integrated through the network with a

CAD engineer’s design workstation, so that they may be reconfigured elec-

tronically.

10 Novell AppWare

Figure 3 shows the three categories of software required to connect these

many different systems.

Each of these categories offers many competing APIs and services. Figure 4

highlights some of these APIs and services.

In the network services category, a number of network services exist, includ-

ing electronic messaging, database, directory services, and others. The

complexity is intensified because many of these services have several avail-

able implementations, with different APIs. Consider electronic messaging, for

example. At least four competing standards exist for messaging APIs: vendor

independent messaging (VIM), Microsoft Messaging API (MAPI), CCITT

Standard X.400 and Novell Message Handling Services (MHS).

11Novell AppWare

LEGACY
SYSTEM UnixWare

Application
Server

UNIX SVR
4.2

UnixWare PFMacintoshOS/2MS Windows/
MSwindows NT

Novell DOS

SERVICE
PLATFORMS

COMPUTING
DEVICES

Notebook
Computer
(Mobile)

OS/2
NT

Other
Platforms

PDA

NetWare

NetWare

Thermostat

Figure 2. The heterogeneous computing environment

Network Services Client OS

Network

Figure 3. Three categories of
enterprise software infrastructure

In the client operating systems category, developers need to select the appro-

priate operating system for particular applications. Some of these operating

systems include MS Windows, Macintosh, UNIX, OS/2 and DOS.

At the network category, multiple network standards can deliver network

services to the layers above. Appendices A through D describe in detail the

technologies that comprise this layer.

Each category offers a wide array of valuable choices. Each single API or

standard can be a critical technology essential to the construction of a partic-

ular application. The challenge today is to leverage, unify and integrate these

choices to produce real-world, mission-critical network applications. This is

the infrastructure on which AppWare rests.

AppWare’s Components

Just as a set of blueprints lays out the plans and components needed to con-

struct a building, a computing architecture lays out the conceptual model

required to organize a particular system. In addition, a computing architec-

ture identifies the system’s components and their relationships. Figure 5

illustrates the components of AppWare.

AppWare is based on the concept of leveraging existing technologies. Thus,

the AppWare architecture builds on top of all major client operating systems

and most major distributed services, including file systems, shared printing

resources, document management, imaging, telephony, digital multimedia

and directory management services.

In the past, many of the functions these services supplied were hard-coded

into applications. This doubled the effort required to deliver an application.

Early GUI programs had to be built directly to the graphics hardware, which

proved to be an extremely time-consuming task. Developers soon learned to

create libraries of the common, reusable functions, leading to the develop-

ment of specialized GUIs. Though applications with GUI interfaces were easy

to use, their development cost could still be prohibitive. It was not until the

Apple Macintosh pioneered the availability of a widespread, consistent GUI,

that applications built around this technology began to gain momentum.

12 Novell AppWare

WOSA

UnixWare

OCE

OLE

HD-DOMS

OpenDoc

MHS

DSOM

MAPI

NDS

Macintosh

NT

OS/2

Windows
UnixWare

DOS

NetWare

Banyan

LAN Manager

ONC

DCE

NT

Figure 4. A mix of networks and
client operating systems

Database technology development has experienced a similar progression. At

first, developers wrote applications directly to the file system, and the data

was managed differently for each individual application. The format of the

data was also application-specific, which made it difficult to share data

among applications. Again, the next stage was to construct common libraries

for data storage and access. This refinement allowed particular systems of

programs to share data. However, as data storage and access technology

continued to become more widespread and complex, corporate MIS were

unable to keep up with the need to deliver data over the network to multiple

users across multiple platforms. In response, database vendors began provid-

ing cross-platform database engines that a number of applications share over

the network. Today, those same database vendors are trying to provide stan-

dards, such as Structured Query Language (SQL) and Integrated Database

API (IDAPI), that address the issues inherent in managing data simultane-

ously across multiple databases and data models.

A broad variety of vendors providing a wide array of services, as well as mul-

tiple implementations of these services, has created the need for the first

AppWare component, called the AppWare Foundation.

13Novell AppWare

Figure 5. The AppWare architecture

AppWare Bus

AppWare Foundation

Network

ALMALMALM

Client OS
and GUI

Network
Services

ALM
User

Applications

AppWare

Network
Operating Systems

Hardware

The AppWare Foundation

The AppWare Foundation hides the complexities of networks, local operating

systems, and GUIs from developers who write line-by-line code using 3GLs,

such as C, C++, COBOL and Pascal (see Figure 6). The AppWare Foundation

provides a consistent, standard set of APIs that allows developers to access

the services provided by both the network and the local operating system.

Using the AppWare Foundation, developers can create cross-platform net-

work applications without compromising system performance, application

functionality and compatibility with existing and emerging technologies.

The AppWare Foundation includes the Universal Component System (UCS)

technology which Novell acquired with the purchase of Software

Transformation, Inc. Other components include the CPI-C interfaces for host

connectivity and the X/Open distributed transaction processing APIs, which

are supported by Tuxedo. The AppWare Foundation also supports multiple

compound document architectures, such as Apple’s Compound Document

Architecture and Microsoft’s Object Linking and Embedding (OLE) architec-

ture. Appendix E describes these technologies.

Applications written to the AppWare Foundation can connect transparently to

existing network services. An application programmer need no longer be

aware of where a service is located or how it can be accessed. The program-

mer simply chooses the application’s target platform, and the AppWare

Foundation builds the necessary code to connect the application to the native

services of that platform. When the developer recompiles the same code for a

different platform, the AppWare Foundation implements the appropriate

native services for the chosen platform, again without involving the program-

mer. For example, using the AppWare Foundation, a programmer writes the

same code whether he or she is accessing files from an application on a

Macintosh, MS Windows or a UNIX platform.

Application Portability

Using the AppWare Foundation’s API set, the developer writes the applica-

tion code only once and recompiles it to run on multiple platforms. This kind

of portability for desktop applications is critical because many organizations

have a mix of desktop platforms. Even organizations that have settled on a

14 Novell AppWare

WOSA

UnixWare

OCE

OLE

HD-DOMS

OpenDoc

MHS

DSOM

MAPI

NDS

Macintosh

NT

OS/2

Windows
UnixWare

DOS

NetWare

Banyan

LAN Manager

ONC

DCE

NT

AppWare Foundation

Figure 6. The AppWare Foundation is
independent of network services, client
operating systems, and GUIs

single desktop platform may need such portability to accommodate and take

advantage of new technologies as they emerge. The AppWare Foundation

provides portability across a wide variety of platforms, letting businesses

take advantage of new technologies while preserving current system invest-

ments.

The goal of platform portability toolkits is to provide the same functionality

across different platforms. As simple as this may sound, it is actually quite

difficult. For example, almost all applications allow users to enter text in one

form or another. However, text-editing ranges from basic editing, such as

modifying the data fields in a forms package, to highly sophisticated editing,

such as revising a document using a publishing system. When features are

available on all platforms, as is the case with simple text entry fields or pull-

down menus, compatibility problems seldom arise. The real question is how a

multiplatform development environment should handle features not available

on all platforms, such as multiple fonts in a text box or undo capability.

Platform portability toolkits typically take one of two approaches: they pro-

vide only common features (least-common-denominator toolkits) or they

provide all the features (superset functionality). Taking the least-common-

denominator approach is very efficient, but does not meet specific

functionality requirements. However, providing a complete superset of the

features available on each platform is probably impossible.

The AppWare Foundation does not provide portability by dropping to the

lowest common denominator of all the supported environments. Rather, it

identifies real-world application requirements for given areas of functionality.

Upon establishing such requirements, functionality was added to those plat-

forms that required it. While this is a superset approach, AppWare

Foundation stops short of providing a 100 percent superset, concentrating

instead on the functionality that commercial developers are most likely to

need. Feedback from current users indicates that the AppWare Foundation is

one of the most robust technologies available.

Most horizontal business applications can be coded exclusively to the

AppWare Foundation, ensuring maximum portability and transparency of

access to network services. However, the architecture is flexible and will

allow programmers to drop to the operating systems’ native APIs to gain

more direct access to the system software or hardware as needed. Therefore,

applications can still take full advantage of the unique functionalities and

native services of local operating systems and networks.

In addition, programmers are free to use the platforms, compilers, linkers and

debuggers of their choice. The AppWare Foundation is compatible with

Symantec, Borland, Microsoft, MPW, Lightspeed, SABER and GNU compilers,

and with Multiscope, Codeview, and SADE debuggers.

Underneath the AppWare Foundation exists the Common Request Broker

Architecture (CORBA) specified by the Object Management Group (OMG).

CORBA provides an infrastructure that allows objects to communicate, and is

independent of specific platforms and languages used in the implementation

of the objects. The CORBA architecture is described in Appendix F.

15Novell AppWare

Benefits of the AppWare Foundation

The AppWare Foundation provides application developers with a complete

set of APIs for implementing enterprise business applications using 3GLs.

The benefits of the AppWare Foundation include the following:

• A single API set for different operating systems and networks

• Portability of the applications built to the AppWare Foundation

• Transparent access to network services

• High application performance

• Support for the evolution to distributed objects

For additional information about the AppWare Foundation, please refer to

the Novell AppWare Foundation White Paper.

The AppWare Bus and AppWare Loadable Modules

Although the AppWare Foundation simplifies the application development

process, it supports only those developers who write applications with 3GLs.

In other words, one must still be a well-trained programmer in traditional

programming languages to create applications based on the AppWare

Foundation set of APIs. Corporate and vertical software developers using

4GL and 5GL tools require a much more rapid, efficient development

platform.

In these rapidly changing environments, access to prefabricated software is

the key, thereby transforming the creation of applications from an art form to

an assembly line production model. Building software with 3GLs is similar to

building a car from raw metal, glass, rubber, and plastic. Building software

using reusable modules is parallel to building a car from ready-made parts,

such as an engine, wheels, seats, instruments and a steering wheel.

The AppWare Bus is a software engine that does for applications what the

hardware bus did for personal computers — namely, it manages and coordi-

nates the interaction of prefabricated, plug-in software components called

AppWare Loadable Modules (ALMs) (see Figure 7).

ALMs are software objects that provide access to the functionality provided by

both local operating systems and network services. ALMs can range from

simple graphical utilities and spreadsheet modules to network services such

as database and messaging. Business application developers can create new

applications quickly and easily by linking different ALMs. The Novell Visual

AppBuilder™ tool is designed specifically for this task. This tool is described

in more detail in the following pages. Developers can also use other 4GL and

5GL tools that are compatible with the AppWare Bus to create new applica-

tions.

ALMs are large-grained, high-level software objects, which means they are

much larger and more automatic than, for example, C++ classes. In a typical

business application, a developer may use only 25 different ALMs to create all

the needed functionality. Using C++ classes, as many as 500 to 1000 different

classes can be used to create the same functionality. ALMs are more intelli-

gent and functional than lower-level software components such as classes,

but are smaller than today’s massive horizontal applications (See Figure 8).

16 Novell AppWare

Since ALMs plug into the AppWare Bus, they can communicate and work

together—even when created by different programmers.

Corporate developers typically have many in-house projects with overlapping

components, such as custom reporting applications for different departments

that must access the same data. Using ALMs, corporate developers can link

the appropriate modules to create applications, reusing existing modules and

leveraging each other’s work.

Creating ALMs

Novell has already created a number of basic and network ALMs, such as

MHS and Btrieve®, and is actively working with a number of ISVs to provide

additional ALMs. For example, Cheyenne Software is creating ALMs for imag-

ing and document management. Various third parties have already built ALMs

for accessing Oracle and Sybase databases. In addition, MIS programmers

may want to create new ALMs to provide key elements of functionality with

17Novell AppWare

Figure 7. AppWare Loadable Modules

AppWare Bus

AppWare Foundation

Network

Security

Client OS
and GUI

Network
Services

File/
Print

Data-
base

Messag-
ing

Figure 8. ALMs compared to other software components

Application — Excel

ALM

C++
Class

information systems. Then, business application developers can link ALMs

without having to understand how they were built.

ALMs are built using 3GLs and the AppWare Foundation. ALMs can be cre-

ated with almost any Microsoft, Borland, Symantec, or MPW compiler. The

Novell ALM Construction Kit provides the interfaces necessary to plug

ALMs into the AppWare Bus.

AppWare eliminates at least two risks for custom software providers: time-to-

market and environment selection. The ALMs available on the AppWare Bus

can significantly reduce application development cycles. Also, AppWare’s

availability for most major commercial desktops reduces the cost of a porting

effort to a simple recompile.

Novell Visual AppBuilder

Novell now offers a high-level programming tool that has been tightly integra-

ted into AppWare. The Visual AppBuilder tool provides an environment for

rapid application development of network and standalone applications.

Visual AppBuilder allows applications to be constructed by selecting icons

that represent different ALMs. Then, developers use on-screen links to create

application logic (see Figure 9). Visual AppBuilder provides a 5GL-level devel-

opment environment, enabling programmers who do not necessarily know

the details of 3GL development to rapidly create full-featured, reliable appli-

cations.

The range of applications developers can create is limited only by the range

of ALMs provided by Novell and third parties. This makes Visual AppBuilder

an ideal, easy-to-use tool for developing corporate and vertical business appli-

cations that keep pace with today’s changing business environment.

18 Novell AppWare

Figure 9. Novell Visual AppBuilder session on a Macintosh

For example, consider a developer who wants to provide an easy-to-use auto-

mated telephone directory system for a global corporation. Suppose the

directory information is stored in an Oracle database and the users of this

program are non-technical, so the application needs a multimedia front end.

In addition, the available hardware offers automatic answer and dialing

through the telephony services on the network.

Using a 3GL tool, it would take several years and many developers to create

such an application. Visual AppBuilder enables a few developers to build this

application in only a week. A developer would simply connect graphically the

Oracle database ALM, the multimedia ALM and the telephony ALM to create

the new application without writing traditional line-by-line coding. Because

ALMs are based on the AppWare Foundation, the application can be ported

quickly to any common operating system and network.

ALMs make available all the services provided by the network and the local

operating system. With ALMs for directory services, security, licensing, soft-

ware distribution, telephony, work flow, imaging, multimedia and even office

productivity, a new world of networked applications is now open to corpo-

rate and vertical software developers.

Benefits of the AppWare Bus and ALMs

The AppWare Bus, ALMs and Novell’s Visual AppBuilder benefit corporate

developers, smaller ISVs, system integrators and Value-Added Resellers

(VARs) whose software needs exceed horizontal productivity applications.

Some of these benefits include the following:

• Rapid “plug-and-play” model for application development

• Network services available to all developers

• Reliable, powerful applications for corporate MIS, vertical software devel-

opers and system integrators

• 4GL and 5GL development tools, rather than 3GL tools

• Use of 100 percent open and extendible through new ALMs

• Portable over major operating systems and networks

For additional information on the AppWare Bus, ALMs and Novell’s Visual

AppBuilder, please refer to the Novell Visual AppBuilder White Paper.

19Novell AppWare

Integration with Third-Party Tools

AppWare’s open architecture allows application developers to integrate the

AppWare Foundation and AppWare Bus with a variety of third-party tools to

provide additional functionality. For example, using AppWare Foundation

APIs with Microsoft’s Visual C++ can increase the efficiency of creating

cross-platform applications. Novell’s goal is to work closely with third party

tool vendors to accomplish the following:

• Provide access to network and other services through the AppWare

Foundation, so developers can deliver more sophisticated applications

while writing less code.

• Extend the base of ALMs, allowing developers to quickly construct busi-

ness solutions by combining ALM building blocks.

• Allow 4GL tool vendors, such as Gupta Technologies, Powersoft and Easel

Corporation, to access the functionalities of ALMs.

Using AppWare: An Example

Suppose a developer wishes to create a networked document management

application that will, among other things, route documents to fax servers and

electronic mail servers. The application is designed such that the document

destination handling is performed on a file server, but the user interface and

editing are handled at the client workstation. Consider the development pro-

cess using three different approaches of software development tools.

First Scenario

Using a relatively traditional set of application development tools, a

developer must write core application modules that perform the document

editing, as well as other software modules. Developers would have to do

the following:

• Design protocols to establish communications between the client worksta-

tion and the machine providing the routing services

• Handle the construction, buffering, and sending and receiving packets at

both ends of this process.

• Handle error detection, resending and acknowledging packets.

• Design some mechanism for locating the service provider, perhaps as

rudimentary as having the user enter the name or address of the remote

machine.

• Design an algorithm for establishing and verifying the identity of the

client, possibly involving maintaining passwords or keys.

• Design and implement a minimal command language to enable the pro-

cesses to perform such functions as opening a file remotely (for reading

and writing).

• Design a user interface and implement the routing services on the target

server machine and design the user interface code on the target client

machine.

20 Novell AppWare

• Port the code for both the client and the server to several different envi-

ronments, each one having specific communications code, graphics code

and operating system calls.

This scenario provides innumerable challenges to the programmers and takes

months or years to implement. It also presents a challenge for testing and main-

tenance, which grows exponentially with each new version of the product.

Second Scenario

In the second scenario, the developer of the same document management

application will still have the same editing and routing code to implement, but

can limit the communications and housekeeping modules. In this scenario,

the developer may use, for example, Remote Procedure Calls (RPCs) to

establish communication and perform the authentication, RPCbind or NIS to

locate the service, and some GUI tools to build the user interface. The devel-

oper must write a specification file for RPCgen, determine whether a

datagram or guaranteed message service is necessary for this specific appli-

cation, and provide a means to specify the acceptable transport service, such

as a configuration file. After writing the service code for the server and the

user interface and writing the front-end code for the client workstation, the

developer ports the code to different platforms, such as Macintosh, MS

Windows and UnixWare.

Third Scenario

In the third scenario, the developer uses Visual AppBuilder or another

AppWare-compatible tool to rapidly build his application, on both the server

and the client sides. The developer designs and implements the solution by

graphically linking ALMs. The ALMs, for example, might be a text editor, a

document tagging service, fax services and electronic mail services. The

ALMs are represented by icons and the application is created by linking the

appropriate icons.

The ALMs the developer uses have already been written to the AppWare

Foundation. These ALMs rely on the underlying location broker to locate the

fax and e-mail services, to verify and select the appropriate available trans-

ports, and to authenticate the user. The developer uses the windowing

system provided by GUI ALMs to build the user interface and recompile the

application once for each target environment.

Conclusion

Building an infrastructure is an ambitious undertaking which can never be

totally completed. The construction of an interstate highway system provides

a good example. The expense and effort were considerable, but the benefits

reaped from making new businesses and opportunities possible far surpassed

the outlay in resources.

Similarly, a development infrastructure like AppWare can enable applications

that might otherwise be impossible to bring to market. By providing an under-

lying collection of high-level, advanced services and the communications

necessary to link service consumers and service producers, AppWare makes

the construction of distributed applications far simpler than ever before.

21Novell AppWare

Instead of the five- to eight-year effort it has taken to bring groupware prod-

ucts to market, AppWare can cut the time required to deliver such products

to less than two years. The time savings results from the ability to use prede-

fined services for database, calendaring, messaging and the like, without

having to construct them from scratch. Also, the ability to use the network

without having to subdue the protocol, communications and handshaking

issues saves additional time.

By adopting AppWare as a development framework, application developers

gain more than time. They gain:

• Access to a broad range of platforms without requiring multiple instances

of their code for every platform they wish to support, eliminating the sup-

port and maintenance headaches.

• Access to a rich set of services along with transparent network access,

thereby cutting application development time and extending the kinds of

application problems they can solve.

• Control over a set of application tools and methods enabling developers to

easily create client- and server-side modules.

All this adds up to increased developer productivity, better application flexi-

bility, improved leverage of effort and broader markets for software.

By incorporating AppWare-based applications into their networks, users ben-

efit from AppWare. Users gain:

• More broadly available network services. The power and flexibility of

AppWare-based applications will make distributed services more broadly

available.

• More flexibility and ability to change in the face of shifting needs and

requirements. The customized nature of AppWare-based applications

enables this flexibility.

• More extendible applications. The open-ended nature of ALMs makes such

applications far more extendible than before and enables them to take

advantage of new or enhanced services.

All this adds up to increased user productivity, more responsive and capable

applications and rapid incorporation of technological changes and advances.

Why Novell?

The primary reason Novell is taking this bold step is to break the application

backlog that threatens to slow the growth of the networking industry. Other

important reasons include responding to customers’ demands for more

advanced, distributed applications; the desire to make networking completely

central to information systems; and the fundamental need to improve the

technology used to solve business problems. Novell believes its work and

expertise in laying the groundwork for an application development infrastruc-

ture, and its openness to working with partners and customers, make Novell

uniquely qualified to meet this challenge.

Although Novell did not focus on the development marketplace in the past, it

is uniquely positioned to deliver a development infrastructure. For the last

22 Novell AppWare

ten years, Novell has been building some of the most advanced networking

solutions available in the marketplace. Novell offers support for more net-

working topologies and technologies than any other vendor. Likewise, Novell

supports more client and service platforms than all other vendors, ranging

from desktops to mainframes, all of which can interoperate freely within the

NetWare environment.

Novell also offers the broadest range of integrated internetworking solutions,

for both wide-area and local-area access, across most available communica-

tions technologies. These offerings comprise the most complete

communications and interoperability solution available from any vendor. In

summary, Novell has the networking and interoperability coverage needed to

support an infrastructure.

Just as Novell has shielded complexity and raised the level of network pro-

ductivity in the past, Novell can shield complexity and raise the level of

productivity for networked applications development and deployment.

No single company can provide a complete infrastructure, and Novell’s

unparalleled partnerships and programs play an important role in the devel-

opment of a complete infrastructure. Novell has always been a partnering

company; Chairman and CEO Ray Noorda is credited with coining the term

“coopetition” to reflect Novell’s willingness to cooperate with its fiercest

competitors. Novell has also been an impetus for forming industry-wide

groups, like the Technical Support Alliance™ (TSA), to bring vendors

together under a single support umbrella, and avoid the finger-pointing exer-

cises that network troubleshooting can so often cause.

Novell offers testing and compliance programs, such as “Yes It Runs With

NetWare” for NetWare-compatible products. Novell also has one of the broad-

est education and certification programs for networking specialists in the

world, the “Certified NetWare” professional programs. In addition, Novell

offers options for training, service and support that continue to be widely

emulated throughout the computing industry. Novell also maintains relation-

ships and alliances with key consulting firms, major platform vendors and

customer groups, to stay in close touch with industry trends, technologies and

customer requirements. These partnerships and programs demonstrate

Novell’s ability to enlist broad support for an infrastructure, as it works

closely with all the key players needed to stay ahead of emerging technologies.

In addition, Novell offers a wide range of distributed services to multiple

client platforms through its NetWare and Unix products, from file and print,

to database, messaging and directory. In the next 18 to 24 months, Novell will

add support for services to provide electronic software distribution; software

license metering and monitoring; imaging; telephony; document management;

and multimedia from internal efforts and with joint development with compa-

nies like Imagery and Fluent Technologies (multimedia). These services

highlight the ideal platform Novell offers to supply the advanced services that

an infrastructure can deliver.

Novell has the ability to excel at enterprise networking and interoperability; it

has the partnerships and programs needed to support enterprises; and it

provides the richest set of distributed services. Therefore, Novell is pushing

23Novell AppWare

forward to build an application development infrastructure to leverage these

assets.

Novell clearly recognizes that the process of realizing the AppWare architec-

ture is a lengthy, difficult and labor-intensive task. Novell cannot tackle this

effort alone; significant input and cooperation from partners and developers

has been and will be required. Even so, the potential benefits are enormous,

and the rewards are significant.

To prove its depth of commitment to AppWare, Novell will publish the

AppWare interfaces as they are defined. Novell also intends to keep the

AppWare development tools open to all interested third parties, and will aug-

ment the technologies and interfaces that AppWare accommodates based on

customer requests and market demands. In addition, Novell is committed to

using AppWare for its own internal development efforts.

Novell is committed to providing complete education, service and support for

all components of the AppWare initiative, and to providing copious

background and training materials about the AppWare architecture. Since the

value of an infrastructure is measured only by the way it is used, Novell’s

primary goal is to build an infrastructure that suits the needs of the develop-

ers who use it.

24 Novell AppWare

Appendix A: The NetWare Operating System

NetWare is Novell’s network operating system. While many other networking

environments are discussed as if they were network operating systems, they

are in fact add-ons to existing general purpose operating systems such as

UNIX or OS/2. Novell’s NetWare was developed as a specialized system for

providing network services. Its heritage as a service platform, enables

NetWare to provide a highly optimized platform for hosting services, as

opposed to general purpose applications such as spreadsheets.

NetWare also exports network services to applications running on other plat-

forms. For example, the NetWare Directory Services allow users and

applications to find resources on the network. The components of NetWare

that enable distributed services are described in the following sections.

The NetWare Multiprotocol Architecture

NetWare’s protocol engine allows NetWare to support multiple transport

protocols. More importantly, this protocol engine allows applications to

access distributed services through several protocols. This access is crucial

to supporting a heterogeneous enterprise network.

STREAMS and Open Datalink Interface

STREAMS was created by Dennis Ritchie of AT&T Bell Laboratories, as an

input-output system for implementing terminal drivers and network proto-

cols. This system has become an integral part of UNIX System V. A stream is

a collection of modules providing a head at one end and a driver at the other

end. The modules between the head and tail can provide transport protocol

stacks, filters and data routers.

The architecture of STREAMS allows a stream to be multiplexed at the head

to any number of processes, and at the driver to any number of drivers. In the

context of networking, STREAMS provides the mechanism for allowing an

application or service to communicate over multiple transport protocols, by

connecting through a STREAMS multiplexor to several stream heads.

STREAMS also allows a protocol stack to multiplex to several hardware

drivers, and therefore operate over multiple media, for example, Ethernet and

Token-ring.

In the case of NetWare, the interface specified for drivers to connect with

STREAMS-based protocol stacks is called the Open Datalink Interface™

(ODI). ODI has become the standard for PC-LAN network interface card

drivers and Novell has recently augmented the specification to provide for 32-

bit drivers that will work in either 16-bit or 32-bit environments. Thus, a

driver developed for the NetWare server will work in the DOS, OS/2, MS

Windows and UnixWare environments.

The Interfaces: IPX™/SPX Sockets, TLI and TIRPC

The Transport Level Interface (TLI) is an interface to a STREAMS-based

transport provider. The interface is defined to be as independent of the trans-

port provider as possible, yet allow access to particular functionalities of a

25Novell AppWare

given transport. On NetWare, TLI can be used to interface to the AppleTalk

Apple Data Stream Protocol (ADSP) stack, the Transmission Control

Protocol/Internet Protocol (TCP/IP) stack, as well as Novell’s own Sequenced

Packet Exchange/Internetwork Packet Exchange (SPX/IPX). Access to spe-

cific characteristics of a transport are handled in a standardized manner,

enabling the application or service to manage connections over a wide variety

of transports. Novell provides the TLI on the NetWare server, DOS, MS

Windows, OS/2, and UnixWare.

Remote Procedure Calls (RPCs) provide a standardized inter-application

protocol. The model of one procedure within an application calling another is

thereby extended to include invocation of procedures running on other sys-

tems on the network. RPC masks the intricacies of the communications code

from the developer of a distributed application. Novell provides an RPC

mechanism based on and interoperable with UNIX System Laboratories’

Transport Independent RPC.

The RPC technology must also address problems regarding data types on

differing hardware platforms. An example is the difference in integer repre-

sentation on the Motorola 68000 microprocessors and the Intel i8X

microprocessors. The Motorola processor stores integers with the most sig-

nificant byte first; the Intel processors store integers with the least significant

byte as the first. The RPC mechanism deals with this challenge through the

eXternal Data Representation (XDR) format. XDR specifies a standard by

which data can be represented in a machine-independent format. Note that

XDR can be used by itself to provide machine-independent data representa-

tions in contexts other than RPCs.

Transport Independent RPC (TIRPC) allows a service or application to be

built such that it will accept connections over more than one transport proto-

col. TIRPC leverages the Transport Level Interface to achieve transport

independence. Thus, a service can provide its functionality to other services

and applications on the network, regardless of the transport protocol con-

necting them.

NetWare Authentication

Authentication allows objects on the network to “prove” their identities to

one another. As such, authentication is the basis for all network security.

Once identity is established in a network session, the system can determine

whether the user has access to a network resource by checking an access

rights list associated with a given object.

The authentication services provided by networking software offer applica-

tions an infrastructure so they can set up authenticated sessions and verify

that the user connecting to their service has rights to access the information

it accesses.

Authentication is a network service; other applications can use NetWare’s

Authentication Services infrastructure and APIs to set up authenticated ses-

sions between their own services and clients. In NetWare, authentication is

session-oriented. A client’s signature, the basis of authentication, is valid only

for the duration of the client’s login session. The signature itself is never

transmitted across the network.

26 Novell AppWare

27Novell AppWare

NetWare’s authentication mechanism is based on RSA technology, a public-

key encryption model named after its inventors, Rivest, Shamir and Adleman.

The RSA method eliminates the need for transmittal of unencrypted keys.

Once an authenticated connection to the network has been established, all

other authentication takes place in the background without need to obtain

additional user passwords.

The interfaces for authentication are straightforward. There are calls to login

to the network and to authenticate to servers on the network based on con-

nection IDs.

NetWare Basic Network Services

After an application or user authenticates itself to the network, it can take

advantage of the other basic network services, including some Directory

Services, Time Services and the file system services.

NetWare Directory Services

As more data is distributed across networks, users find it increasingly diffi-

cult to determine what is available on the network and how to get access to

it. Directory Services provides applications with a means of finding things on

the network. A directory is an object database that provides information on

the resources available on the network and how they can be accessed.

NetWare Directory Services (NDS) is a global, distributed and replicated

database. It is based on parts of the CCITT X.500 standard. The Directory

Access Services perform the work of accessing the directory and returning

information. The basis for the NDS Access Services operations is the set of

abstract services described in the CCITT X.500 Directory Recommendations.

The NetWare interfaces are derived from these abstract service definitions.

NetWare Time Services

The purpose of a time service is to synchronize the clocks of computers on

the network with the Universal Time Coordinate. Synchronization is critical

on a network because the consistency and integrity of the distributed direc-

tory database depends on a coordinated time.

The system clocks on the network are divided into clients and servers. Servers

synchronize with each other and clients match time with the servers. The inter-

faces for accessing this coordinated time include ANSI standard interfaces.

NetWare Universal File System

The NetWare File System provides a universal file server engine upon which a

number of file system protocols have been implemented. The directory struc-

ture of the NetWare server provides for multiple Name Spaces, allowing the

correct information to be kept for a file so that it can be presented as an Apple

Macintosh, ISO FTAM, UNIX NFS, OS/2 HPFS, or DOS file. The DOS file system

access is built into the NetWare operating system. Other filing protocols are

provided by adding the appropriate NetWare Loadable Modules™ (NLMs).

It should be noted that access under each of these models is “just as if” the

access were under the native server environment, so that a UNIX client to the

NetWare file services would operate on the file with the standard UNIX

interfaces.

Appendix B: Open Network Computing (ONC)

The Open Network Computing model was largely defined by Sun

Microsystems and includes what has become the standard distributed file

system protocol in the UNIX environment—NFS. Much of the ONC technol-

ogy has since been included in the UNIX SVR4.X offering from UNIX System

Laboratories, and is available from Novell as part of the UnixWare

Application Server. The following are the components of ONC.

ONC Transport Protocol Architecture

The ONC networking model, like NetWare, is built on a STREAMS-based

protocol environment, with TLI and TIRPC as key developer interfaces. The

overlap in supported protocols is also significant: both environments support

TCP/IP, the ISO transport protocols, and in the UnixWare implementation of

SVR4.2, IPX/SPX.

Streams

USL’s UNIX SVR4 release merged much of the technologies represented in

the UNIX System V Family with the other prevalent UNIX variant of the time,

Berkeley System Distribution (BSD) 4.3. Also, Sun Microsystems had built the

Sun OS on the Berkeley distribution, having added the RPC component and

NFS to provide a basis for distributed computing. Sun redesigned its RPC to

become transport-independent by implementing it using Transport Layer

Interface (TLI), a STREAMS-based transport provider interface.

The Interfaces: TLI and TIRPC

The implementations of TLI and TIRPC in the ONC environment interoperate

with Novell’s network environment. Communications code written using

these interfaces should readily port between the environments as well.

Kerberos Authentication

Kerberos Authentication is an add-on to this environment. It is not offered

uniformly, but the underlying RPC mechanism has provision for adding

extensions to use whatever authentication mechanisms are available.

Typically, the authentication mechanism used is that available in the UNIX

system implementation.

ONC Basic Network Services

The Network Information Service (NIS+)

NIS+ provides a naming service similar to that of NetWare’s. It is based

loosely on the X.500 standard. NIS+ was architected to interface with other

naming services to provide gateway capabilities extending to other name

spaces.

28 Novell AppWare

29Novell AppWare

Network Time Protocol (NTP)

ONC supports the NTP, an Internet standard defined by the Internet Activities

Board. This protocol provides the same functionality as the NetWare Time

Services.

The Network File System (NFS)

The Network File System has become the de facto standard for distributed

file systems in the UNIX environment. It is built upon the RPC protocols and

uses the XDR standard data format to ensure that data can be stored and

retrieved regardless of the machine architecture of the server or the client.

NFS supports a subset of local file semantics for the access of remote files,

allowing clients to access file systems or subtrees of file directories on

remote systems. NFS is supported by Novell’s UnixWare Application Server

Product and is available as an add-on file access protocol to the NetWare

server.

Appendix C: Distributed Computing Environment (DCE)

The OSF is a consortium of hardware and software vendors whose goal is to

provide a common operating system and distributed computing environment

for heterogeneous platforms. The DCE is comprised of a set of services that

can be used individually or together to form the infrastructure for distributed

computing. DCE categorizes the components into two classes: Fundamental

Services, those services upon which developers will implement other dis-

tributed services; and Data Sharing services, which provide end-users with

file sharing and printing capabilities.

DCE technology comes from the following vendors: Digital Equipment

Corporation, Hewlett-Packard Company, The Massachusetts Institute of

Technology, Siemens AG, Microsoft Corporation, Sun Microsystems, and

Transarc Corporation.

The following sections describe the components of DCE.

The DCE Protocol Architecture

DCE does not specify how protocols are to be implemented. However, OSF

has endorsed the use of the XTI interface, which is an X/Open® version of

Transport Layer Interface (TLI). The DCE RPC mechanism has been imple-

mented over XTI and gains transport independence as a result.

The Interfaces: Sockets and DCE RPC

In most DCE implementations, a form of the Berkeley System Distribution

Socket interface is supported. This interface is not specified as a part of DCE,

but is a lower-level element that is usually present.

DCE places great emphasis on its RPC mechanism as the primary vehicle for

implementing distributed applications and services. The DCE RPC comes

from Digital Equipment Corporation and Hewlett-Packard. A primary differ-

ence from the ONC TIRPC is in the data format. DCE uses the Network Data

Representation (NDR) which operates on the receiver-makes-right principle.

The differences between XDR and NDR preclude interoperability between

the two RPC mechanisms.

Within DCE, RPC is viewed as a fundamental architectural element upon

which all other elements of the architecture derive their means of

distribution.

Kerberos Authentication

An integral part of DCE’s security services, Kerberos is based on private-key

encryption technology, and thus relies on the physical security of the authen-

tication server. Private-key authentication mechanisms do not lend

themselves to global or intercell authentication because there is no mecha-

nism for protecting the key while it is being transferred. The key must remain

“private” to maintain security.

30 Novell AppWare

Because of this, OSF plans to ensure that applications built to their environ-

ment are portable from Kerberos to public key authentication mechanisms

such as the RSA mechanism used in NetWare.

DCE Distributed Naming Service

The DCE supports two name service models: a cell-based service, which has

stringent performance requirements, and a second model that provides sup-

port for the global X.500 directory protocols. The OSF believes this dual

model approach best serves the requirements of performance, as well as

global interoperability across an enterprise. Developers use a common pro-

grammatic interface to access either cell directory services or the remote

name servers. Note that the technology for these naming services came from

two different companies; Digital Equipment supplied its Distributed Naming

Service (DECdns) for the cell directory, and Siemens submitted its DIR-X

X.500 service. Furthermore, OSF’s DCE provides a common API across these

services.

Time Service

The time service technology was supplied by Digital Equipment. The purpose

of the time service is the same as in the NetWare environment; other services

such as the distributed file system and authentication mechanism require that

systems on the network have synchronized clocks.

The service is based on an algorithm that synchronizes the time between time

servers and allows clients to get the time from the synchronized servers.

DFS—The Distributed File System

The Distributed File System technology for DCE, the Andrew File System

(AFS), came from Transarc. The architecture is built around a cache manager

on DFS client systems connected via RPC to the NFS protocol exporter. The

NFS protocol exporter allows existing NFS and (PC) NFS clients to access

the DCE file system. The file system is integrated with the environment ser-

vices for authentication, naming, and time service.

31Novell AppWare

Appendix D: Microsoft NT Advanced Services Networking

Microsoft NT’s networking derives from its earlier efforts, MS-Net and LAN

Manager. While LAN Manager was often referred to as a network operating

system, it was really a collection of add-on applications and drivers to the

OS/2 operating system environment. With the advent of NT, Microsoft has

added networking to the operating system kernel.

The architecture of Microsoft’s network support has evolved into something

resembling the other major networking environments, DCE, ONC and

NetWare, albeit in a more proprietary fashion. The following sections high-

light the components of Microsoft NT.

The Microsoft NT Protocol Architecture

The protocol architecture of NT combines the earlier NetBEUI with

STREAMS-based protocol stacks such as TCP/IP and IPX/SPX. All of the pro-

tocols have an interface to the transport driver interface (TDI). Interfaces

with which application developers normally interface, such as NetBIOS and

Sockets, then interface with the TDI to gain access to the protocol stacks

themselves.

At the lower end of the protocol stacks, the network driver interface specifi-

cation (NDIS) defines the interface the network interface cards.

Streams

As previously mentioned, NT provides a STREAMS environment which maps

at its upper boundary to TDI and to NDIS at its lower boundary. Protocol

stacks can be implemented as STREAMS-based drivers or as monolithic

drivers to TDI, as is the case with Microsoft’s implementation of NetBEUI.

Unlike the other networking environments, TLI or a derivative is not sup-

ported. However, TDI has some of the characteristics of the Transport

Provider Interface (TPI) as defined in UNIX STREAMS, which is the protocol

of the STREAM head to which TLI is connected.

The Interfaces: NDIS, TDI, MSRPC and Win Sock

Microsoft’s networking interfaces provide functional equivalence to those

supported in the other paradigms. NDIS is analogous to network interface

card driver specifications ODI and DLPI. The TDI interface provides some of

the functionality of the STREAMS Transport Provider Interface (TPI).

MS RPC, a Microsoft derivative of DCE’s Remote Procedure Call technology,

may provide a pathway to DCE-based services, but it is unclear at this time

whether NT has the required client support to authenticate itself to DCE envi-

ronments.

32 Novell AppWare

Advanced Network Services Authentication

The authentication mechanism used in the Advanced Services networking for

NT is the same used to authenticate users as they log on to a stand alone NT

platform. The user or application may log on either to the workstation, or to a

“domain.” When logging onto a domain, the user or application gains access

to the resource directories of all NT platforms within that domain.

Basic Network Services

Microsoft NT provides basically the same functionality as LAN Manager 2.0

did, albeit implemented more directly in the kernel of the operating system.

Microsoft NT has a redirector and responder architecture which tie to its TDI

interface to provide protocol independence.

The naming service provided is domain-based and is not a true global direc-

tory. Microsoft has stated that it will provide a path whereby it interoperate

with OSF’s DCE to provide robust enterprise-level networking services. It is

difficult to determine the exact nature of how NT’s networking model will

evolve.

33Novell AppWare

Appendix E: Compound Document Architectures

Compound documents are documents that contain different types of media

like text, graphics, video, and charts. Constructing these documents requires

that a user move between several different applications, each with a different

user interface. This process can be tedious and is certainly not productive.

Complex documents which contain several media are becoming the norm

rather than an exception. At the same time, the single user desktop model is

evolving to a collaborative computing model as workgroups combine efforts

to create complex documents.

A new usage model is required that simplifies compound document creation

in a collaborative environment. Compound document architectures are being

developed by a number of different vendors to provide a model for the inter-

action of users with documents composed of a wide array of content types. In

these architectures, developers are able to break monolithic applications into

independent components, sometimes called “applets” which can be assem-

bled into a whole within the framework of the document architecture.

Apple’s Compound Document Architecture

Apple’s Compound Document Architecture is a model for the creation and

storage of compound documents. Its approach is to decompose software into

independent modules, or “parts,” which can be flexibly combined in a variety

of ways.

The Apple Compound Document Architecture includes support for editing “in

place” without having to exit the primary document and cut and paste. The

architecture provides support for drafts which aid in managing versions of

documents. Apple’s architecture offers interoperability between heteroge-

neous platforms.

Novell is working with Apple and other third parties to deliver Apple’s

Compound Document Architecture on the MS Windows desktop, as well as

enable the architecture for client/server network environments. One facet of

Novell’s implementation will be the ability to share compound documents

among heterogeneous desktops.

Microsoft’s OLE 2.0

OLE stands for Object Linking and Embedding. OLE is Microsoft’s infrastruc-

ture for embedding objects within documents. These objects are comprised

of data such as text or graphics coupled with the application functionality to

manipulate that data.

OLE 2.0 supports in-place activation, allowing objects within documents to

be activated with in the containing window of the application. Objects

under OLE 2.0 may contain other objects, and the contained objects may be

operated on.

OLE provides Microsoft with the basic capabilities required to support com-

pound documents.

34 Novell AppWare

Appendix F: Object-Oriented Programming

The goal of OOP is to provide a programming model which supports the

reuse of standard software building blocks. The primary benefits are

improved reliability of applications and improved productivity of developers.

OOP also provides a more natural way to design applications because appli-

cations become models of the “real” world.

OOP is based on a few well-defined concepts:

Objects—Programs are built by putting together software components

called objects. An object may model a “real” world component like a check-

ing account or automobile. Objects have one or more attributes or fields that

define the state of the object. Objects have behavior which is defined by a set

of methods which can modify the attributes of the object. Objects have a

unique identifier which distinguishes it from other objects in the software

system.

Encapsulation—the details of the data structures and methods are hidden.

The only access to the data within an object is through its associated meth-

ods. Isolating the details of the object keeps the impact of changes to the

object from impacting other components of the program. The object is a

black box.

Messaging—The way objects interact is based on a client–server model,

where the client object passes the server object a request message with any

information required for the server to process the request. The server object

then sends the client a reply. The services an object provides are defined by

the methods the object makes available for other objects to use. It is interest-

ing to note that this request reply model lends itself to distribution of object

over a network. The message from one object to another simply goes over the

network instead of remaining on the local platform.

Data Abstraction—Object classes are defined as being the attributes and

methods for a type. An example might be a graphical object class such as a

circle, which had methods to print, display, and size itself. A developer

defines the class circle once. In defining the class he must write the code for

the methods to draw a circle on the display, to print a circle on the printer,

and to change the size of the circle. The developer can then create an

instance of a circle and give it a name in his program. The code for the meth-

ods is stored with the class and occurs once, but the attributes or instance

variables are stored for each instance.

Inheritance—Data abstraction enables the notion of subclasses and super-

classes of a class. A developer can create a new class by “inheriting some or

all of the characteristics of a class and adding new attributes and methods. In

the case of the circle mentioned above, a color filled circle class could be

created by inheriting from the base class circle and then adding a method to

fill the object with a color, and an attribute to store the color. In some lan-

guages it is possible to inherit from more than one parent class. This is called

multiple inheritance.

35Novell AppWare

Distributed Object Computing

Distributed Object Computing is a new computing model that merges dis-

tributed computing with object-oriented technology. Objects in this model

are software components which provide their services over the network. As

discussed above, in the object model of programming an object interacts with

other objects by sending requests to them. The objects receiving a request

process it and sends back a response message. The Distributed Object

Computing model extends this notion by interjecting an object management

system which brokers service requests and responses.

Object Request Brokers

A system component called the Object Request Broker (ORB) acts to locate

service providers and convey requests to them from clients needing the ser-

vice, thereby providing a mechanism for transparently accessing distributed

services from within an application.It is the job of the ORB to locate the ser-

vice and communicate the request to the service provider. The ORB also

coordinates sending the reply back to the requester of the service.

The ORB establishes a contract with the client application and with objects

providing services on the network. Essentially the ORB extends to the client

the contract to locate objects providing the requested service and to see that

the request is fulfilled. The ORB extends to the object supplying the service a

contract to connect it with clients requesting its services. To clients the ORB

extends a contract that it will get the request to a server who can fulfill it and

that it will get the reply back to the client.

The Common Object Request Broker Architecture (CORBA)

The Object Management Group (OMG), a non-profit international trade asso-

ciation, has specified the Common Object Request Broker Architecture

(CORBA). This architecture specifies an infrastructure that allows objects to

communicate, and is independent of specific platforms and languages used in

the implementation of the objects.

The goal of the OMG is to foster a framework within which software compo-

nents can be used in a plug-and-play fashion. Under this framework, a

company could purchase a software component and write applications using

its services without becoming locked into it. When a better implementation

becomes available, it would be possible to substitute the new one without

modifying the applications calling upon the services.

The CORBA model provides for an evolutionary path to distributed object

computing. CORBA objects need not be implemented in an object-oriented

language. In fact, many of the benefits of object orientation can be delivered

to existing systems because it is possible to encapsulate the existing system

with an object interface. This is done by writing a class interface front-end.

It is not necessary to have a complete implementation of the object request

broker on each system where there are objects residing. A Basic Object

Adapter (BOA) is the component in CORBA which handles object reference,

object invocation, and state related services to a set of object implementa-

tions. An ORB may have several object adapters each specialized for a given

environment. In the case of legacy systems, the object adapter may provide

36 Novell AppWare

specialized communication services from the host environment to the ORB

running on a NetWare or UnixWare server. The legacy functionality is

wrapped with an object-oriented front-end. This allows all clients and service

platforms to access the legacy system’s functionality as they would any other

service on the network. In fact, the clients of the service need not be aware

that the object’s implementation is on a mainframe at all.

Distributed Object Management provides the AppWare Enterprise

Architecture with an evolutionary path from procedural client–server com-

puting into the future of distributed object computing. Distributed objects

provide increased support for reusability and as a result significant gains in

the productivity of development staff.

37Novell AppWare

38 Novell AppWare

AppWare Glossary

Application Programming Interface (API)—Means by which an application

gains access to system resources, usually for the

purpose of communication, data retrieval or other

system services.

AppWare—Name given to a new layer of software from Novell. AppWare

leverages today’s popular operating systems, devel-

opment tools, and applications, hides the complexity

of the network, and delivers its value.

AppWare Bus—Software engine that manages and coordinates the interac-

tion of software components called ALMs.

AppWare Foundation—A set of standardized Application Programming

Interfaces (APIs) for both the local operating system

and network services. The AppWare Foundation API

provides 3GL (like C, C++, COBOL) application pro-

grammers with a common cross platform interface

to multiple Graphical User Interfaces (GUIs), operat-

ing systems, and network services.

AppWare Loadable Module (ALM)—Software object that provides access to

the functionality provided by both local operating

systems and network services. ALMs can be written

with 3GL or 4GL tools.

ALM Construction Kit—Software Developer’s Kit (SDK) from Novell that

provides the interfaces for developing AppWare

Loadable Modules (ALMs).

Attributes—Technique for describing access to properties of files and direc-

tories within a filing system. For NetWare files,

attributes include Read, Write, Create, Delete and

Execute Only. For NetWare directories, attributes

include Read, Write, Create, Execute and Hidden.

Attributed File System—File system that stores attributes as well as data.

Usually, attributed file systems store multimedia

data found, for example, in compound documents.

Authentication—Allows objects on the network to identify themselves to one

another. It is the basis for all network security. Once

identity is established in a network session, the sys-

tem can determine whether the user has access to a

network resource by checking an access rights list

associated with a given object.

CCITT—Committee that recommends standards for communications equip-

ment interfaces, communications protocols, and

modem modulation methods.

CICS—IBM’s Command Information and Control System (CICS) transaction

environment. Supports Online Transaction Processing

(OLTP) systems under MVS, OS/2, and AIX.

Client operating systems—The system software at the desktop. This is often

extended to include the GUI system support, like the

Macintosh Toolbox, Motif, or Microsoft Windows.

Client–Server—Application model where a client sends requests to a service

and receives replies. Client and server are roles. At

different times an application can take on either role.

Codeview—Microsoft’s source-level debugger.

Collaborative Applications—Application which allow users to share their

work product, thereby enhancing productivity.

CORBA—Common Object Request Broker Architecture defined by the Object

Management Group (OMG). CORBA specifies an

infrastructure that allows objects to communicate,

and is independent of specific platforms and lan-

guages used in the implementation of the objects.

COSE—Common Operating System Environment. Initiated by DEC, HP, IBM,

SCO, SUN, Univel and USL to create a common set

of APIs across all versions of the UNIX operating

system.

Datagram—A network transport protocol which delivers packets on a best

effort basis.

DCE—Distributed Computing Environment, the networking model defined

by the Open Software Foundation (OSF).

Distributed Application—Application which executes on more than a single

system.

Distributed Services—Software components residing on the network that

provide functionality to client applications.

DOMS—Distributed Object Management System. A piece of software which

manages storage of object interfaces and communi-

cation between objects and clients accessing the

object’s services.

DSOM—IBM’s Distributed System Object Model. Provides a CORBA object

management system for distributing objects under

their standalone System Object Model.

GNU—Cross-platform suite of publicly available C and C++ development

tools for the UNIX environment.

GUI—Graphical User Interface.

Heterogeneous Environment—Computing environment where different hard-

ware, operating systems, and GUIs must coexist.

39Novell AppWare

Lightspeed—A C-language compiler for the Apple Macintosh.

Message Handling Services (MHS)—Novell’s messaging protocol.

Messaging Application Programming Interface (MAPI)—Microsoft’s messag-

ing interface.

Multiscope—Symantec, Inc.’s source code debugger.

MOTIF—GUI software developed by the Open Software Foundation. MOTIF

runs over the XWindows protocol, and is the stan-

dard for GUIs in the UNIX environment.

Network Application—Application that uses network services or distributes

its execution across multiple networked systems.

Network Service—Software component that provides functionality which can

be accessed over the network by other applications

or services.

Network Service Independent—Interface that provides access to more than

one implementation of a service.

Novell Visual AppBuilder—High-level programming tool which is tightly inte-

grated with the AppWare architecture. AppBuilder

allows developers to construct applications by visu-

ally linking icons representing ALMs.

OLE—Object Linking and Embedding, Microsoft’s infrastructure for embed-

ding objects within documents. Objects are

comprised of data—such as text or graphics—cou-

pled with the application functionality to manipulate

that data.

Open Doc—Apple’s Compound Document Architecture, a model for creating

and storing compound documents. Its approach is to

decompose software into independent modules, or

“parts”, which can be flexibly combined in a variety

of ways.

ONC—Open Network Computing, Sun Microsystem’s networking model. It

includes the Network File System (NFS), the stan-

dard distributed file system in the UNIX

environment.

ORB—Object Request Broker, a system software component that acts as an

intermediary between clients and objects that pro-

vide services.

OSF—Open Software Foundation, a consortium of hardware and software

vendors with the goal of providing a common operat-

ing system and distributed computing environment

for heterogeneous platforms.

Service provider—A software component that provides functionality used by

other applications or software components.

40 Novell AppWare

Software bus—System software that enables software components to operate

in a plug-and-play fashion, much like a hardware bus

that enables option cards to extend the basic hard-

ware system.

Software License Server—A software component for metering usage of soft-

ware on a network.

SOM—System Object Model, IBM’s architecture for defining and managing

binary class libraries.

Sequenced Packet Exchange (SPX)—Protocol through which two worksta-

tions or applications communicate across the

network. SPX uses NetWare IPX to deliver the mes-

sages, but SPX guarantees delivery of the message

and maintains the order of messages on the packet

stream.

Standalone application—Application that executes completely on a single

machine. Network services are not leveraged.

System Application Architecture (SAA)—A set of IBM-defined standards that

provide a consistent environment for programmers

and users across a broad range of IBM equipment,

including microcomputers, minicomputers and main-

frames.

Telephony—A network service that integrates computer and telephone net-

working technology.

Third Generation Languages (3GLs)—Procedural programming languages,

such as C, C++, FORTRAN, and COBOL.

TIRPC—Transport Independent Remote Procedure Call, a technology that

provides a standardized inter-application protocol.

With TIRPC, one procedure within an application

can call another, and can invoke procedures running

on another system on the network.

TLI—Transport Layer Interface, an interface to a STREAMS-based transport

provider. TLI is independent of the transport

provider, yet allows access to particular functionali-

ties of a given transport.

Project—Basic unit of organization for an application built with Novell’s

Visual AppBuilder.

Subject—Reusable “sub-project” or unit of an application built with Novell’s

Visual AppBuilder.

Object—Basic unit of encapsulation as defined within Novell’s Visual

AppBuilder.

Function—The behavior of a Visual AppBuilder object.

Transaction—Unit of work that is guaranteed to complete in its entirety or be

rolled back.

41Novell AppWare

42 Novell AppWare

Transaction Monitor—A system software component that supports

distributed transactions by providing capabilities

such as data integrity through a two-phase commit,

as well as security through authentication and autho-

rization features.

TUXEDO—UNIX System Laboratories’ transaction monitor.

Ubiquitous Computing—Term that applies to everyday devices which have

embedded computational capability.

UNIX SVR4.X—UNIX System V Release 4.X, the current version of the UNIX

operating system offered by UNIX Systems

Laboratories.

Workflow—Integrated technology in the network environment that enables

workgroups to share documents and work collabora-

tively.

WOSA—Microsoft’s Windows Open Services Architecture, a model for con-

necting MS Windows applications to back-end

services.

